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Abstract 

The purpose of this  paper use The writer the non Axiomatic logical systems 

(normal logical systems, the Axiomatic logical systems and the axiomatic logic) 

, Language and definitions, Operators, Inductive clause I  and Inductive clause 

II, To proof of theorems of the non- formal systems DS1, DS2, DS3, DS4 will be 

presented 

 The deduction system the DSi,1≤ i ≤ 4 

 The soundness and completeness of the DSi,1≤ i ≤ 4 

 Definition(soundness 1  

 Definition a model  

 The Completeness Theorem 

 Theorem (Godel Completeness Theorem) 

ـــــــــــــــــــــــــــ ــــــــــــــــ ــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــ ـــــــــــــــــــــــــــ ـــــــــــــــــــــــــــ ــــــــــ ـــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــ ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــ ــــــــــــــــ ــــــــــــــــــــــــــــــــــــــ ــــــــــــــــــــــ ــــــــــــــــــــــــــــ ــــــــــــــــــ ــــــــــــــــــــ ــــــــــــــــــــــــــــــ ــــ ـــــــــــــــــــــــــــــــــــــــــــــــــــــ ــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــــ ـــــــــ ــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــ ـــــــــــــــ ــــــــــــــــــــــــــــــ ـــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــ ـ

ـــــــــ ــــــــــــــ  

Introduction: 

The propositional calculus is a 

branch of mathematical logic sometimes 

called propositional logic, it deals with 

the study of mathematical and logic ,it 

divides  into two mains branches. 

- Non Axiomatic logical systems (normal 

logical systems) . 

- Axiomatic logical systems (the 

axiomatic logic). 

In the study of  non- Axiomatic logical 

systems we use a natural deduction 

system without axioms, which has an 

empty axiom set. to study and proof  

Thermos of the deduction systems DSi,1≤ 

i ≤ 4 
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1. Language and definitions: 

1-1 Atomic proposition: An atomic 

proposition is a sentence contains       

only  one content either true or falls. The 

small letters of the alphabet (a,b,c…etc)   

standing as atomic proposition. 

1-2 Operators: symbols denoting the 

following connectives (or logical 

operators): ¬, , ∨, , ↔. 

1-3 Parentheses: Left and right parentheses: 

( , ) , { [ ( , ) ] } 

1-4 Complex proposition: a complex 

proposition is a composition 

 of  more than one atomic proposition with 

some operators and       parentheses, the 

capital letters of the alphabet (A , B, C) 

standing as complex proposition. 

1-5 well formed formula (wff):  A well formed 

formula (wff)is a set of  complex 

propositions is recursively defined by the 

following rules: 

- Basis: Letters of the alphabet 

(usually capitalized such as A, , B, 

,C,D,etc.) or the Greek alphabet (χ , φ, 

ψ)are well-formed formulas wffs is 

recursively defined by the following 

rules: 

- Inductive clause I: If φ is a wff, then ¬ φ is a 

wff. 

- Inductive clause II: If φ and ψ are wffs, then 

(φ ψ), (φ ∨ψ), 

 (φ → ψ),and (φ ↔ ψ) are wffs. 

 

 

 

1.6 Rules of inferences: 

A rule of inference is a valid argument 

used to deduct a new wff from a previous 

wffthe following are some of rules of 

inferences: 

p            Simp ├q  : Simplification          p 1    R 

p          q  ├q  : Com mutative           p  2R

Com 

q        Conj p  ├: Conj unction              p , q 3R 

1.7  Rules of manipulation: 

Proposition (1.1) :If A and A →B are 

tautologies, then so is B . 

Proof. Suppose that Aand A →B are 

tautologies, and that B is not. Then 

there is an assignment of truth values to 

the statement letters appearing in A or in 

B which gives B the value F. But it must 

give A the value T since A is a tautology, 

and so it gives A →B the value F. This 

contradicts the assumption that A→B is 

a tautology. Hence Bmust be a tautology. 

Rules of manipulation and substitution. 

1.8  Rules of substitution: 

Proposition (1.2): Let A be a wff in which 

the statement letters 

P1 , P2 ,........, P nappear, and let A1 , A2 

,......., An be any wffs. If A is a tautology 

then the statement form B , obtained 

from A by replacing each occurrence of 

Piby Ai (1≤ i ≤n)throughout, is a tautology 

also, i.e. substitution in a tautology 

yields a tautology. 

Proof: Let A be a tautology and let P1 , 

P2 ,........, P nbe the statement letters 

appearing in A . Let A1 , A2 ,......., Anbe any 
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statement forms. Assign any truth values 

to the statement letters which appear in 

A1 , A2 ,......., AnThe truth value 

thatB now takes is the same as that 

which A would have taken if the values 

which A1 , A2 ,......., Antake had been 

assigned to P1 , P2 ,........, P nrespectively, 

namely T. Hence B takes value T under 

any assignment of truth values, i.e. B is a 

tautology. 

Now consider the statement form 

((AA) →B). (A A) , which appears in 

this form, is logically equivalent to A 

(since ((A A) ≡ A)is a tautology). If 

wereplace (A A) by A , we get ( A →B ). 

Now(A →B ) is logically equivalent to 

((A A) →B). Again this is an instance of 

general proposition substitution 

1.9  A proof: 

         We will use a natural deduction 

system, which has no axioms; or, 

equivalently, which has an empty axiom 

set. Derivations using our calculus will 

be laid out in the form of a list of 

numbered lines, with a single wff and a 

justification on each line. Any given wff 

considered to be assumptions and 

written in the top of  the proof . The 

conclusion will be on the last line. A 

derivation will be considered complete if 

every line follows from previous ones by 

correct application of a rule 

Theorem: 

      The last wff  in the proof called a 

theorem .  

2.1 The deduction system DS1 

In this section of this paper discussion 

and proofs of theorems of the non- 

formal systems DS1,DS2,DS3,DS4 will be 

presented. 

2.2 Rules of  inferences of DS1: 

1. (A  B) ├A                                             

Simplification 

2. (A  B├ (B ∧ A)                                        

Commutative   

3. A , B  ├ (A ∧B)                                        

Conjunction 

Theorem2- 1-1:  A ( B C ) ├ A  

Proof 

1) A ( B C )                            assum.  

2) A                                             1 ,simp. 

            A ( B C ) ├A 

Theorem2-1-2:( B C ) E ├ E                                                                            

1) 1.   ( B  C )  E                      assumption 

2)  2.  E ( B C )                       1, com.  

3) E                                                 2, simp. 

( B C )  E ├ E 

 

Theorem 2-1-3: C ( D E ) ├ D  

Proof: 

1) C  ( D  E )                             

assumption 

2) ( D  E )  C                                1, com.                    

3) D  E                                              2, simp. 

4)    4) D                                            3, simp. 

C ( D E ) ├ D  
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Theorem 2-1-4 : A  D ,  B  C ├   C  (A 

 D ) 

Proof : 

1.   A  D                                                      

assumption 

2.   B  C                                                       

assumptio 

3.   C  B                                         2, com. 

4 .C                                                    3, simp. 

4. C  (A D )                               

5. 4,1, conj. 

A D ,  B  C ├   C  D 

Theorem2-1-5:(A  B)  C ├ B  C  

Proof : 

1.    (A  B)  C                                      

assumption 

 2.  A  B                                       1, simp. 

3.  C ( A B )                               1, com. 

 4.  C                                                 3, simp. 

 5.  B  A                                          2, com. 

 6. B                                                   5, simp. 

  7. B  C                                         4, 6, conj. 

(A  B)  C ├ B  C 

 

The deduction system DS2 

Rules of  inferences of DS2 

1.  (A  B) ,¬A ├B     Disjunctions  

syllogism(DS) 

2.  (A ∨ B)  ├ (B ∨ A)                                   

Commutative   

3.  A ├ (A ∨B)                                               

Addition 

Theorem 2-2-1:- 

B , A  B ├ A 

Proof 

1. B                                                          

Assumption 

2. A  B                                                      

Assumption 

3. B  A                                                        2 , Com 

4. A                                                                3 , 1 ,DS 

B , A  B ├ A 

Theorem 2-2-2:- 

C  D ├ D  E 

Proof 

1. C  D                                                       

assumption 

2. D  C                                                        1 , Com 

3. D                                                               2 , Simp 
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4. D  E                                                         3 , add 

 C  D ├ D  E 

Theorem2-2- 3:- 

( A B )  B ├ A 

Proof 

1. (A  B ) B                                                                

assumption 

2. A  B                                                                                 

1,simp 

3. B  (A  B )                                                                 

1 , Com 

4. B                                                                                   

3 , Simp 

5. B  A                                                                               

2 , Com 

6. A                                                                                      

5 , 4 , DS 

( A B )  B ├ A 

Theorem2-2- 4:- 

(A  B) , (C  D)  (A  B) , D ├ ( C 

 D)  ( E D ) 

Proof 

1. (A  B)                                                

assumption 

2. (C  D)  (A  B)                                 

assumption 

3. D                                                         

assumption 

4. ( A  B )  ( C  D )                             2 , Com 

5. C  D                                                    2 , 1 , DS 

6. D  E                                                 3 , Add 

7. E D                                                 6 , Com 

8. ( C  D)  ( E D )                          5 , 7 , 

conj 

(A  B) , (C  D)  (A  B) , D ├ ( 

C  D)  ( E D ) 

Theorem 2-2-5:- 

(B C )A , (E  D)  (B  C) ├ (D  

A )  ( E  D) 

Proof 

1. (B  C )  A                                          

assumption 

2. (E  D)  (B  C)                                    

assumption 

3. (B  C )                                                   1 , 

Simp 

4. A (B  C )                                            1 , 

Com 

5. A                                                                  4 , Simp 

6. (B  C)  (E  D)                                      2 , 

Com 

7. E  D                                                         6 , 3 , DS 

8. A  D                                                          5 , Add 

9. D  A                                                           8 , Com 

10. (D  A )  ( E  D )                                   9 , 7 , 

Conj 

(B C )A , (E  D)  (B  C) ├ (D 

 A )  ( E  D) 

The deduction system DS3 

Rules of  inferences of DS3 
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1(A  B) , A ├B                                      Modus 

Ponnens (MP) 

1. (A  B) , ¬B ├¬A                             Modus 

Tollens (MT) 

Theorem 2-3-1:- 

A B , A ├ B 

Proof 

1. A  B                                                   assumption 

2. A                                                        assumption 

3. B                                                               1 , 2 , MP 

 A B , A ├ B 

Theorem 2-3-2:- 

A B ,B ├A 

Proof 

1. A B                                                         

assumption 

2. B                                                                 

assumption 

3. A                                                                 1 , 2 , 

MT 

A B ,B ├A 

 

Theorem 2-3-3  :- 

A ( A B ) ├ B 

Proof 

1. A  ( A  B )                                                  

assumption 

2. A                                                                      1 

,Simp. 

3. ( A  B )  A                                                   1 , 

Com. 

4. A  B                                                                3 , 

Simp 

5. B                                                                       2 , 4 , 

MP 

 A ( A B ) ├ B 

Theorem2-3-4:- 

 (A  B) ( B C ) , C ├ A 

Proof 

1. (A  B )  ( B  C )                                               

assumption 

2. C                                                                           

assumption 

3. A  B                                                                      1 , 

Simp 

4. ( B  C )  ( A  B)                                               

1 , Com 

5. B  C                                                                      4 , 

Simp 

6. B                                                                           2 , 

5 , MT 

7. A                                                                           3 , 

6 , MT 

 (A  B) ( B C ) , C ├A 

Theorem2-3-5 :- 

 (A B )( B C ) , C  D , A ├ D 

Proof  

1. (A  B )  ( B  C )                                              

assumption 

2. C  D                                                                     

assumption 

3. A                                                                             

assumption 
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4. A  B                                                                       1 , 

Simp 

5. ( B  C )  ( A  B )                                               

1 , Com 

6. B  C                                                                       5 , 

Simp 

7. B                                                                               3 , 

4 , MP 

8. C                                                                               6 , 

7 , MP 

9. D                                                                               2 , 

8 , MP 

(A B )( B C ) , C  D , A ├ D 

The deduction system DS4 

Rules of  inferences of DS4 

1. (A  B), (B  C├ (A  C)                     

Hypothetical Syllogism (HS) 

2. (A  B), (C  D), (A∨ C├ (B∨ D)             

Constructive Dilemma(CD) 

 

Theorem 2-4-1:-      A B , C  A ├ C  B 

Proof 

1) A  B                                               assumption 

        2) C A                                              

assumption 

      3) C  B2 , 1 , HS 

 

A B , C  A ├ C  B 

Theorem 2-4-2:- A B , A  C , C  D ├ B 

 D 

Proof  

1) A  B                                                  assumption 

2) A  C                                                  assumption 

3) C  D                                                  assumption 

4) B  D1 , 2 , 3 , CD 

A B , A  C , C  D ├ B  D 

Theorem 2-4-3:-  D  ( A  B ) , D  C , C 

 ( E  A ) ├ E  B 

 Proof  

1) D  ( A  B )                                                          

assumption 

2) D  C                                                                      

assumption 

3) C  ( E  A )                                                          

assumption 

4) D                                                                             2 , 

simp 

5) C  D                                                                      2 , 

com 

6) C                                                                             5 , 

simp 

7) E  A                                                                      3 , 

6 , MP 

8) A  B                                                                      1 , 

4 , MP 

9) E  B                                                                      7 , 

8 , HS 

 D  ( A  B ) , D  C , C  ( E  A ) ├ 

E  B 

Theorem 2-4-4:- A  B , ( B  D)  ( A E 

) ├ (D  E)  (E  D) 

Proof  

1) A  B                                                                       

assumption 

2) ( B  D)  ( A  E )                                                 

assumption 

49 "



3) B  D                                                                      2 , 

simp 

4) (A  E)  (B  D)                                                   

2 , com 

5) A  E                                                                      4 , 

simp 

6) E  D                                                                       1 , 

3 , 5 , CD 

7) (E  D) (D  E)                                                 

6 , add 

8) (D  E)  (E  D)                                                  

7 , com 

 A B , ( B  D)  ( A E) ├ (D  E) 

 (E  D) 

Theorem 2-4-5:-   (A  B) C , D  E , C 

 D ├ B  E 

 Proof  

1) (A  B)  C                                                                   

assumption 

2) D  E                                                                             

assumption 

3) C  D                                                                            

assumption 

4) A  B                                                                                

1 , simp 

5) C  (A  B)                                                                    

1 , com 

6) C                                                                                      

5 , simp 

7) C  E                                                                              

2 , 3 , HS 

8) C  A                                                                              

6 , add 

9) E  B                                                                              

4 , 7 , 8 , CD 

10) B  E                                                                              

9 , com 

 (A  B) C , D  E , C  D ├ B  E 

  

3- The soundness and completeness of 

the DSi,1≤ i ≤ 4 

In this part of the paper we will prove the 

soundness and the completeness of  the 

non-formal systems  (LDSi ) , 1≤ i ≤ 4. 

For  both systems  DSiwe suggest 

defining a symbol (LDSi ) to represent 

the set of all previous theorems DSi, in 

Otherwise: 

LDSi= { DSi , 1≤ i ≤ 4}. 

3-1 Definition :( contradiction ). 

contradiction is a wff that is ⊥ under any 

possible ⊤ assignment of  truth values of  

the wff . 

Such propositions are called un-

satisfiable. Conversely, a contradiction is 

¬⊤. 

3-2 Definition(soundness 1).  

If LDSi is a set of  theorems , and φis a 

single wff , we say a deductive is sound  if  

LDSi├φ LDSi╞φ 

to mean that φmay be derived from LDSi 

using only the rules of inference. 

Remark . 

        Every theorem in DSi ,1≤ i ≤ 4, 1≤ i ≤ 4 

is⊤ 
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3-3 Definition a model:  

    A model is a deductive system 

consisting a set of finite assumption , and 

a theorem LDSi. 

3-4 Definition. 

If  LDSi  is consistent  in deduction 

systems andif  there is no wffφsuch that 

LDSi├φ and LDSi├¬φ. Otherwise, LDSi 

is D-inconsistent. 

Remark.If LDSiis a tautology then (¬LDSi 

) is not satisfiable. 

3-5 Definition. 

        If LDSi  is deductive complete if  it is 

deductive consistent and for every 

formula φ,LDSi├φ  or  LDSi├¬φ. 

3 -6 Definition (soundness 2). 

     If LDSi is a set of wffs , and φis a single 

wff, we say a deductive is sound if LDSi  is 

satisfiable then LDSi is deduction 

consistent. 

Remark.An argument is sound  if  and 

only  if : 

1. The argument is valid.  

2. All of its premises are true.  

3-7 Definition (completeness 1). 

If LDSi is a set of wffs , and φis a single 

wff , we say a deductive is sound  if : 

LDSi╞φ LDSi├φ. 

to mean that, for every model M , if 

M╞LDSi , then M╞φ . 

3-8 Definition (completeness 2). 

If LDSi is a set of wffs , and φis a single 

wff , we say a deductive is sound if  LDSi  

is deduction consistent then LDSi  is 

satisfiable. 

3-9 The Completeness Theorem 

     An inspection of the set LDSi of of 

formulae shows that every member of 

LDSi  is valid. Note that if  forwffsφ and 

ψ,  

if╞φand ╞φ  ψ then ╞ ψ. 

3-10  Theorem (soundness) 

If LDSi├φ then LDSi╞φ . 

3-11 Theorem (Godel Completeness 

Theorem) 

         If LDSi╞φ then LDSi├φ . 

3-12.Proposition . 

Theorems 3-11  and3-12 are equivalent. 

Proof. 

      First, we assume that Theorem 3-11  is 

true and prove that Theorem 3-12 

follows. Then, we assume that Theorem 

3-12 is true and prove that Theorem 

3-11  follows. 

Suppose Theorem 3-11  is true. We want 

to show that Theorem 3-12 follows. 

To that end, suppose that LDS iis 

consistent. We must show that there 
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is a model Much that M╞LD Si. 

LDSiis consistent. Thus, for every 

formula ψ ,LDSi⊬(ψ  ¬ψ). Thus, by 

the contra positive of Theorem 4.10, it 

follows that LDSi⊭ (ψ  ¬ψ). That is, it 

is not the case that every model that 

makes LDSitrue also makes (ψ ¬ψ) 

true. Thus, there is a model in which LDS 

iis true  and (ψ ¬ψ). 

Thus, there is a model in which LDS iis 

true, as required. 

Thus, Theorem 4.11 entails Theorem 

4.12. 

         Now, suppose Theorem 4.11 holds. 

And suppose that LDSi╞φ. Then there is 

no model of  LDSi, ¬φ. Thus, by the 

contra positive to Theorem 4.12, LDSi ,  

¬φ is not consistent. That is, 

LDSi, φ├( ψ ¬ ψ ) 

 

It  follows from this that 

LDSi├ (¬φ⊂ (ψ ¬ ψ ) 

Thus , 

LDSi├ (¬ (ψ ¬ ψ )⊂φ) 

And, since LDSi├¬ (ψ ¬ψ ), by modus 

ponens we have that 

LDSi├φ 

as required. Thus, Theorem 3-12 entails 

Theorem 3-11.Thus, Theorem 3-11 and 

Theorem 3-12 are equivalent. 
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