On Propositional calculus (Mathematical Logic)

The Soundness and TheCompleteness of The Non-Formal Systems Deduction

Systems (DSi, $1 \le i \le 4$)

By

Huda Sadeg Rhoma

University of Tripoli - Faculty of Education- Janzour Mathematics Department Janzour.

Libya

Abstract

The purpose of this paper use The writer the non Axiomatic logical systems (normal logical systems, the Axiomatic logical systems and the axiomatic logic), Language and definitions, Operators, Inductive clause I and Inductive clause II, To proof of theorems of the non- formal systems DS₁, DS₂, DS₃, DS₄ will be presented

- The deduction system the DSi,1≤i≤4
- The soundness and completeness of the DSi,1≤ i ≤ 4
- Definition(soundness 1
- Definition a model
- The Completeness Theorem
- Theorem (Godel Completeness Theorem)

Introduction:

The propositional calculus is a branch of mathematical logic sometimes called propositional logic, it deals with the study of mathematical and logic ,it divides into two mains branches.

Non Axiomatic logical systems (normal logical systems).

- Axiomatic logical systems (the axiomatic logic).

In the study of non- Axiomatic logical systems we use a natural deduction system without axioms, which has an empty axiom set. to study and proof Thermos of the deduction systems DSi, $1 \le i \le 4$

Journal Of Education Sciences

Nine Issue May 2022

1. Language and definitions:

"44

- 1-1 Atomic proposition: An atomic proposition is a sentence contains only one content either true or falls. The small letters of the alphabet (a,b,c...etc) standing as atomic proposition.
- 1-2 Operators: symbols denoting the following connectives (or logical operators): \neg , \land , \lor , \supset , \leftrightarrow .
- 1-3 Parentheses: Left and right parentheses: (,),{[(,)]}
- 1-4 Complex proposition: a complex proposition is a composition
 - of more than one atomic proposition with some operators and parentheses, the capital letters of the alphabet (A , B, C) standing as complex proposition.
- standing as complex proposition. 1 Official formed formula (wff): A well formed formula (wff)is a set of complex propositions is recursively defined by the following rules:

- Basis: Letters of the alphabet (usually capitalized such as A, , B, ,C,D,etc.) or the Greek alphabet (χ , φ , ψ)are well-formed formulas wffs is recursively defined by the following rules:

- Inductive clause I: If ϕ is a wff, then $\neg \, \phi$ is a wff.

- Inductive clause II: If ϕ and ψ are wffs, then $(\phi \wedge \psi), \, (\phi \lor \psi),$

 $(\phi \rightarrow \psi)$, and $(\phi \leftrightarrow \psi)$ are wffs.

1.6 Rules of inferences:

A rule of inference is a valid argument used to deduct a new wff from a previous wffthe following are some of rules of inferences:

 $R_{1} : Simplification \quad p \land q \models p \quad Simp$ $R_{2} : Com mutative \quad p \land q \models q \land p$ Com

 $R_{3}: Conjunction p, q \neq p \land q Conj$ 1.7 <u>Rules of manipulation:</u>

Proposition (1.1) :If A and $A \rightarrow B$ are tautologies, then so is B. Proof. Suppose that Aand $A \rightarrow B$ are tautologies, and that B is not. Then

there is an assignment of truth values to the statement letters appearing in A or in B which gives B the value F. But it must give A the value T since A is a tautology, and so it gives $A \rightarrow B$ the value F. This contradicts the assumption that $A \rightarrow B$ is a tautology. Hence Bmust be a tautology. Rules of manipulation and substitution.

1.8 Rules of substitution:

Proposition (1.2): Let A be a wff in which the statement letters

 P_1 , P_2 ,...., P_n appear, and let A_1 , A_2 ,..., A_n be any wffs. If A is a tautology then the statement form B, obtained from A by replacing each occurrence of P_i by A_i ($1 \le i \le n$)throughout, is a tautology also, i.e. substitution in a tautology yields a tautology.

Proof: Let A be a tautology and let P₁, P₂ ,....., P _nbe the statement letters appearing in A . Let A₁, A₂ ,....., A_nbe any statement forms. Assign any truth values to the statement letters which appear in $A_1, A_2, ..., A_n$ The truth value that *B* now takes is the same as that which *A* would have taken if the values which A_1 , A_2 , ..., A_n take had been assigned to P_1 , P_2 , ..., P_n respectively, namely T. Hence *B* takes value T under any assignment of truth values, i.e. *B* is a tautology.

Now consider the statement form $((A \land A) \rightarrow B)$. $(A \land A)$, which appears in this form, is logically equivalent to A(since $((A \land A) \equiv A)$ is a tautology). If wereplace $(A \land A)$ by A, we get $(A \rightarrow B)$. Now $(A \rightarrow B)$ is logically equivalent to $((A \land A) \rightarrow B)$. Again this is an instance of general proposition substitution

1.9 A proof:

We will use a natural deduction system, which has no axioms; or, equivalently, which has an empty axiom set. Derivations using our calculus will be laid out in the form of a list of numbered lines, with a single wff and a justification on each line. Any given wff considered to be assumptions and written in the top of the proof. The conclusion will be on the last line. A derivation will be considered complete if every line follows from previous ones by correct application of a rule

Theorem:

The last wff in the proof called a theorem.

2.1 The deduction system DS1

In this section of this paper discussion and proofs of theorems of the nonformal systems DS_1, DS_2, DS_3, DS_4 will be presented.

2.2 Rules of inferences of DS₁:

1.	(A		^	B)	-A
	Sin	oplificat	tion		-
2.	(A /	^в – (в	ΛA)		
	Со	mmutat	ive		
3.	Α,	B	∧b)		
	Со	njunctio	n		
Th	eore	m2- 1-1	: A∧(B	⊃c)	
Pro	oof				
1)	A۸	√(B⊃ C)	assur	n.
2)	Α			1 ,simp.	
	Α	∧(B⊃	C) -A		
	The	orem2-	1-2:(B \	/C)^E +E	i
	1)	1. (B)	√C)∧E	i i	assumption
	2)	2 . E∧	(B∨C)	1	, com.
	3)	E		2,	simp.
	(B)	√C)∧I	E – E		

Theorem 2-1-3: $C \land (D \land E) \models D$ Proof: 1) $C \land (D \land E)$ assumption 2) $(D \land E) \land C$ 1, com. 3) $D \land E$ 2, simp. 4) 4) D 3, simp. $C \land (D \land E) \models D$

		ة الليبية يويك الترسي	التمامع واسترا		J	ournal Of Education Sciences
	"46		2			Nine Issue May 2022
	Theorem 2-1-4: $A \lor D$, $B \land C \vdash C \land (A)$					(A∧B)∧C -B∧C
	∨D)					
	Proof :					
						The deduction system DS ₂
	1.	A	V	D		Rules of inferences of DS ₂
	assumption					1. $(A \lor B)$, $\neg A = B$ Disjunctions
	2.	В	^	С		syllogism(DS)
	assumptio					2. $(A \lor B) \vdash (B \lor A)$
	3. C∧B	2 , com.			Commutative	
						3. A - (A VB)
	4.C		3, simp.			Addition
4.	C ∧ (A ∨D)					Theorem 2-2-1:-
5.	4,1, conj.					
לם.בץ	AVD, BAC	CAD				Proof
5.0	TI 245/					
JESU	Theorem2-1-5:(A A B) A C	LRVC		1.	¬B Assumption
	Proof :				2.	A∨B
	1		B) ^	ſ		Assumption
	assumption		-, ,, ,,		3.	B∨A 2, Com
					4.	A 3,1,DS
	2. A∧B		1, simp.			¬B, A∨B -A
	3. C∧(A∧B)		1, com.			Theorem 2-2-2:-
			- ·			
	4. C		s, simp.			Proof
	5. B∧A		2, com.			
	6. B		5 simn		1.	CAD
			с, знир.		7	assumption
	7. B∧C		4, 6, conj.		2. 3.	D 2, Simp
						• •

On Propositional calculus (Mathematical Logic The Soundness and TheCompleteness of The Non-

47 "

4.	D∨E	3 , add	6.	$\neg D \lor E$	3 , Add
	∴C∧D D∨E		7.	E∨¬D	6, Com
	Theorem2-2- 3:-		8.	(C⊃D)∧(E∨¬D) conj	5,7,
	(A∨B) ∧¬B ⊢A			$\therefore \neg (A \lor B), (C \supset D) \lor (A \lor$	B), →D
	Proof			C⊃D)∧(E∨¬D)	·
1.	(A∨B)∧¬B			Theorem 2-2-5:-	
	assumption			\neg (B \supset C) \land A, (E \supset D) \lor (B \equiv	oc) ┝(D∨
2.	A∨B			$A) \land (E \supset D)$	
	1,simp			Proof	
3.	$\neg B \land (A \lor B)$				
_	1, Com		1.	\neg (B \supset C) \land A	
4.				assumption	
	3, Simp		2.	$(E \supset D) \lor (B \supset C)$	
5.	BVA			assumption	
C	2, Com		3.	$\neg(B \supset C)$	1,
6.				Simp	
	$(A)(P) \land P \downarrow A$		4.	A ∧¬(B⊃C)	1,
				Com	
	Theorem2-2-4:-		5.	A	4, Simp
	$-(A \setminus B)$ $(C \supset D) \setminus (A \setminus B)$		6.	$(B\supsetC)\lor(E\supsetD)$	2,
	$\neg (A \lor B); (C \supseteq D) \lor (A \lor B)$,		Com	
			7.	F⊃D	6,3,DS
	Proof		8.	A∨D	5 , Add
1	$\neg (A \lor B)$		9.		8 , Com
••	assumption		10	$(D \lor A) \land (E \supset D)$	9,7,
2.	$(C \supset D) \lor (A \lor B)$				
_•	assumption			$\therefore \neg (B \supset C) \land A, (E \supset D) \lor (B \supset C)$	B⊃C) ┝(D
3.				$\vee A$) \wedge (E \supset D)	
	assumption			The deduction system DS ₂	
4.	(A∨B)∨(C⊃D)	2 , Com			
5.	C⊃D	2,1.DS		Rules of inferences of DS ₃	
5.		_,.,			

			الجمعية الليبية		Journal Of Education Sciences		
	1	"48			Nine Issue May 2022		
		1(A ⊃ B), A -	B Modus	5.	B 2,	4,	
		Ponnens (MP)			MP		
	1.	(A ⊃ B), ¬B ├-	¬A Modus		∴ A ∧(A⊃ B)		
		Tollens (MT)			Theorem2-3-4:-		
		Theorem 2-3-1:	-		1		
					$(A \supset B) \land (B \supset C), \neg C \models \neg A$		
		а⊃в,а ⊢в			Proof		
		Proof					
	1.	A⊃B	assumption	1.	$(A \supset B) \land (B \supset C)$		
	2.	A	assumption		assumption		
	3.	В	1,2,MP	2.	¬C		
		∴ a⊃b, a fe	3		assumption		
		Theorem 2-3-2:	-	3.	$A \supset B$	1,	
					Simp		
		Proof		4.	$(B \supset C) \land (A \supset B)$		
≻	1				1 , Com		
SG.I		assumption		5.	هات التدريس	4,	
0.0	2				Simp		
SUS	2.	assumption		6.	⊐B	2,	
٦	2		1.2		5 , MT		
	5.		Ι,Ζ,	7.	¬A	3,	
					6, MT		
		ав,			$\therefore (A \supset B) \land (B \supset C), \neg C \vdash \neg A$		
		Theorem 7.3.3					
			·-		Theorem2-3-5 :-		
					$(A \supset B) \land (B \supset C), C \supset D, A \vdash D$		
	4						
	1.				Proof		
	r	assumption	1	1.	$(A \supset B) \land (B \supset C)$		
	۷.	A Sime	I		assumption		
	7	$(A \rightarrow B) + A$		2			
	3.	(A⊃B)∧A	1,	2.	assumption		
	_		_	3.	A		
	4.	$A \supset B$	3,	0.	assumption		
		Simp					

On Propositional calculus (Mathematical Logic The Soundness and TheCompleteness of The Non-

49"

4.	$A \supset B$	1,	2)	A∨C	assumption
	Simp		3)	C⊃D	assumption
5.	$(B\supset C)\land (A\supset B)$		4)	B∨D1,2,3,CD	
	1 , Com			$\therefore A \supset B, A \lor C, C \supset D \models B$	VD
6.	B⊃C	5,		Theorem 2-4-3:- $D \supset (A \supset A)$	B),D∧C,C
	Simp			$\supset (E \supset A) \vdash E \supset B$	
7.	В	3,		Proof	
	4 , MP		1)	$D \supset (A \supset B)$	
8.	c	6,		assumption	
	7, MP		2)	DAC	
9.	D	2,		assumption	
	8, MP		3)	$C \supset (E \supset A)$	
	$(A \supset B) \land (B \supset C), C \supset D, A \models D$			assumption	
	The deduction system DS_4		4)	D	2,
				simp	
	Rules of inferences of DS ₄		5)	CAD	2,
1.	$(A \supset B), (B \supset C \vdash (A \supset$	C)		com	
	Hypothetical Syllogism (HS)			С	5,
2.	$(A \supseteq B), (C \supseteq D), (A \lor C \vdash (B \lor D)$			simp	
	Constructive Dilemma(CD)			E⊃A	3,
				6 , MP	
	Theorem 2-4-1:- $A \supset B, C \supset A = C \supset B$			A⊃B	1,
	Proof			4 , MP	
1)	A⊃B assumpt	ion	9)	E⊃B	7,
	2) C ⊃A			8 , HS	
	assumption			$\therefore D \supset (A \supset B), D \land C, C \supset (E \supset A)$	
	3) C⊃B2, 1, HS			E⊃B	
				Theorem 2-4-4:- A \lor B , (B \equiv	DD)∧(A⊃E
	$A \supset B, C \supset A \models C \supset B$)	
	Theorem 2-4-2:- $A \supset B$, $A \lor C$, $C \supset D \models B$			Proof	
	VD			$A \lor B$	
	Proof			assumption	
1)	1) A⊃B assumption			$(B\supset D)\land (A\supset E)$	
				assumption	

			الجمعية الليبية تفلعد واسارتجات للديس		Journal Of Education Sciences
	1	" 50			Nine Issue May 2022
	3)	B⊃D		2,	9) E∨B
		simp			4,7,8,CD
	4)	(A⊃E)∧(B⊃	D)		10) B V E
		2, com			9, com
	5)	$A \supset E$		4,	$\therefore (A \supset B) \land C, D \supset E, C \supset D \models B \lor E$
		simp			
	6)	EVD		1,	3- <u>The soundness and completeness of</u>
		3,5,CD			<u>the DSi, $1 \le i \le 4$</u>
	7)	(E ∨ D) ∨¬(D	V E)		In this part of the paper we will prove the
		6 <i>,</i> add			soundness and the completeness of the
	8)	$\neg (D \lor E) \lor (E)$	VD)		non-formal systems (LDSi), $1 \le i \le 4$.
		7, com			For both systems DS_i we suggest
		$\therefore A \lor B, (B \supset$	$D) \land (A \supset E) \vdash \neg (D$	VE)	the set of all provious theorems DS in
		$\vee (E \vee D)$			Otherwise:
		Theorem 2-4-5:	- (A⊃B)∧C,D⊃E	, C	$LDSi = \{ DS_i \ 1 \le i \le 4 \}.$
<u>З.LY</u>					in culturi in ann
ORC		Proof			3-1 Definition :(contradiction).
sus.	1)	$(A \supset B) \land C$			contradiction is a wff that is $oldsymbol{\perp}$ under any
JES		assumption			possible T assignment of truth values of
/	2)	$D \supset E$			the wff .
		assumption			Such propositions are called up-
	3)	C⊃D .			satisfiable. Conversely, a contradiction is
	-1	assumption			¬T.
	4)	$A \supset B$			
	51	T, simp			3-2 Definition(soundness 1).
	5)	$C \wedge (A \supseteq B)$			If LDSi is a set of theorems , and $oldsymbol{arPhi}$ is a
	6)	r, com			single wff , we say a deductive is sound if
	0)	5. simn			LDSi $\downarrow \varphi \supset$ LDSi $\models \varphi$
	7)	$C \supset F$			to mean that $\boldsymbol{\varphi}$ may be derived from LDSi
	.,	2,3,HS			using only the rules of inference.
	8)	CVA			Remark .
	-1	6, add			Every theorem in DS _{i,} 1≤ i ≤ 4, 1≤ i ≤ 4
					isT

3-3 Definition a model:

A model is a deductive system consisting a set of finite assumption, and a theorem LDSi.

3-4 Definition.

If LDSi is consistent in deduction systems and if there is no wff φ such that LDSi $\vdash \varphi$ and LDSi $\vdash \neg \varphi$. Otherwise, LDSi is D-inconsistent.

Remark.If LDSiis a tautology then (¬LDSi) is not satisfiable.

3-5 Definition.

If LDSi is deductive complete if it is deductive consistent and for every formula φ ,LDSi $\mid -\varphi$ or LDSi $\mid \neg \varphi$.

3 -6 Definition (soundness 2).

If LDSi is a set of wffs , and φ is a single wff, we say a deductive is sound if LDSi is satisfiable then LDSi is deduction consistent.

Remark.An <u>argument</u> is sound if and only if :

- 1. The argument is valid.
- 2. All of its premises are true.

3-7 Definition (completeness 1).

If LDSi is a set of wffs , and $\pmb{\varphi}$ is a single wff , we say a deductive is sound if :

LDSi $= \varphi \supset$ LDSi $= \varphi$.

to mean that, for every model M , if M =LDSi, then M = φ .

3-8 Definition (completeness 2).

If LDSi is a set of wffs , and φ is a single wff , we say a deductive is sound if LDSi is deduction consistent then LDSi is satisfiable.

3-9 The Completeness Theorem

An inspection of the set LDSi of of formulae shows that every member of LDSi is valid. Note that if forwffs φ and ψ ,

if $\models \varphi$ and $\models \varphi \supset \psi$ then $\models \psi$. 3-10 Theorem (soundness) If LDSi $\models \varphi$ then LDSi $\models \varphi$.

3-11 Theorem (Godel Completeness Theorem)

If LDSi $= \varphi$ then LDSi $= \varphi$.

3-12.Proposition.

Theorems 3-11 and 3-12 are equivalent.

Proof.

First, we assume that Theorem 3-11 is true and prove that Theorem 3-12 follows. Then, we assume that Theorem 3-12 is true and prove that Theorem

3-11 follows.

Suppose Theorem 3-11 is true. We want to show that Theorem 3-12 follows. To that end, suppose that LDS iis consistent. We must show that there

Journal Of Education Sciences

Nine Issue May 2022

References

 A. G. Hamilton, Logic for Mathematicians , Cambridge University Press1978,(J. W. Arrow smith Ltd ,Bristol BS32NT)

2. Brandon Bennett, A Concise Introduction to the Fundamentals of Classical Logic, School of Computing University of Leeds. January 2002.

3. Edmund Burke, Eric Foxley. Logic and its Applications.C.A.R. HOARE SERIESEDITOR. 1996.

6. LucioTavernini. Foundations of Mathematics: Note 2 (The Propositional

Calculus. 2004

8. Jan Henzl , weak formal systems, theoretical report, Carbbova University, 2003.

9.Jutta Lange, local computational with models in propositional logic, theoretical

report, University of Fribourg.

10. Marc J. Corbeil, mathematic and logic, theoretical report, August 1997

 Mendelson. Introduction to Mathematical Logic.The university series inundergraduate mathematics.
 Mustafa M. Dagli, Mouds Ponens, MoudsTollens and Likeness.

theoreticalreport, Middle East Technical University.

is a model Much that $M \models LD$ Si.

LDSiis consistent. Thus, for every formula Ψ ,LDSi μ ($\Psi \land \neg \Psi$). Thus, by the contra positive of Theorem 4.10, it follows that LDSi $\not\models$ ($\Psi \land \neg \Psi$). That is, it is not the case that every model that makes LDSitrue also makes ($\Psi \land \neg \Psi$) true. Thus, there is a model in which LDS iis true and ($\Psi \land \neg \Psi$).

Thus, there is a model in which LDS iis true, as required.

Thus, Theorem 4.11 entails Theorem 4.12.

Now, suppose Theorem 4.11 holds. And suppose that LDSi $\models \varphi$. Then there is no model of LDS_i, $\neg \varphi$. Thus, by the contra positive to Theorem 4.12, LDSi , $\neg \varphi$ is not consistent. That is,

LDSi, $\varphi \models (\psi \land \neg \psi)$

It follows from this that

Thus,

LDSi $\vdash (\neg (\Psi \land \neg \Psi) \subset \varphi)$ And, since LDSi $\vdash \neg (\Psi \land \neg \Psi)$, by modus ponens we have that

LDSi $[\neg \varphi \subset (\psi \land \neg \psi)]$

LDSi **–**φ

as required. Thus, Theorem 3-12 entails Theorem 3-11.Thus, Theorem 3-11 and Theorem 3-12 are equivalent. 13. PeirluigiMinari. A Note on Lukasiewicz's three – valued Logic
14. Rosalie lemhoff, Provability logic and admissible Rules, theoretical report,Institute for logic, language and computation, University of Van Amsterdam.

Amsterdam. 15. R. Rodrigo Soberano, In Defense of formal logic, theoretical report, University of the Philippines. 16. Ryan Stansifer. Completeness of Propositional Logic as a Program.Department of computer sciences.Florida Institute of technology. March 2001.

الجمعيه الليبية

للمناهج واستراتيجيات التدريس