

The completeness of "Hilbert – Ackermann Axiomatic System" Logic and Descriptive

Deductive Mathematical and Descriptive Logic and propositional calculus

BY أ. صباح عبد السلام ابو سعود

المستخلص:

استخدمت الباحثة في هذه الورقة أساليب وطرق أثبات استكمال نظام: The Deductive Mathematical and Descriptive Logic and propositional calculus To Proof

The completeness of "Hilbert – Ackermann Axiomatic System"

من خلال تطبيق واستخدام الأتى:

- تقديم مفاهيم وقوانين و لغة النسق المنطقى
- تقديم أساسيات وقوانين استخدام Deductive Logic and Descriptive
 - استخدام لغة و قوانين الانسقة المنطقية.
 - إثبات استكمال نظام المسلمات لـ Hilbert and Ackermann.

Background and Language

The capital letters of the alphabet, standing as propositional variables. These are atomic formulas. Conventionally, either the Latin alphabet (A, B, C) or the Greek alphabet (χ, φ, ψ) is used, but the two are not mixed.

Symbols denoting the following connectives (or logical operators):

 $\neg, \land, \lor, \rightarrow, \leftrightarrow$. (We may do with fewer operators (and thus symbols)by having some abbreviate others e.g. $P \rightarrow Q$ is equivalent to $\neg P \lor Q$.)

The left and right parentheses: (,).

The set of well-formed formulas (wffs) is recursively defined by the following rules:

1. Basis: Letters of the alphabet (usually capitalized such as A, B, ϕ , χ , etc.) are wffs.

2. Inductive clause I: If φ is a wff, then $\neg \varphi$ is a wff.

3. Inductive clause II: If φ and ψ are wffs, then $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, and $(\varphi \leftrightarrow \psi)$ are wffs.

4. Closure clause: Nothing else is a wff.

Repeated applications of these three rules permit the generation of complex wffs. For example:

1. By rule 1, A is a wff.

2. By rule 2, \neg A is a wff.

3. By rule 1, B is a wff.

4. By rule 3, $(\neg A \lor B)$ is a wff.

I) Basic argument forms of the calculus

name	sequent	Description
Modus ponens	[(p→q)∧q] ├ p	if p then q ; p; therefore q
Modus Tollens	$[(\mathbf{p} \to \mathbf{q}) \land \neg \mathbf{q}] \models \neg \mathbf{p}$	if p then q; not q; therefore not p
Hypothetical Syllogism	$ \begin{array}{c c} [(p \rightarrow q) \land (q \rightarrow r)] \\ (p \rightarrow r) \end{array} $	if p then q; if q then r; therefore, if p then r
Disjunctive Syllogism	$[(\mathbf{p} \lor \mathbf{q}) \land \neg \mathbf{p}] \vdash \mathbf{q}$	Either p or q; not p; therefore, q
Destructive Dilemma	$ \begin{array}{c} [(\mathbf{p} \rightarrow \mathbf{q}) \land (\mathbf{r} \rightarrow \mathbf{s}) \land \\ (\neg \mathbf{q} \lor \neg \mathbf{s})] & \vdash (\neg \mathbf{p} \lor \neg \mathbf{r}) \end{array} $	If p then q; and if r then s; but either not q or not s; therefore rather not p or not r
Simplification	(p∧q) p	p and q are true; therefore p is true
Conjunction	p, q - (p ^ q)	p and q are true separately; therefore they are true conjointly
Addition	p (p V q)	p is true; therefore the disjunction (p or q) is true
Composition	$ \begin{array}{c c} [(p \rightarrow q) \land (p \rightarrow r)] \\ [p \rightarrow (q \land r)] \end{array} $	If p then q; and if p then r; therefore if p is true then q and r are true

De Morgan's	$\neg (p \land q) \vdash (\neg p \lor \neg q)$	The negation of (p and
Theorem (1)		q) is equiv. to (not p or
		not q)
De Morgan's	$\neg (\mathbf{p} \lor \mathbf{q}) \vdash (\neg \mathbf{p} \land \neg \mathbf{q})$	The negation of (p or q
Theorem (2)		is equiv. to (not p and
		not q)
Commutation (1)	$(\mathbf{p} \vee \mathbf{q}) + (\mathbf{q} \vee \mathbf{p})$	(p or q) is equiv. to (q
		or p)
Commutation (2)	$(\mathbf{p} \land \mathbf{q}) \vdash (\mathbf{q} \land \mathbf{p})$	(p and q) is equiv. to (q
		and p)
Association (1)	[p V (q V r)] - [(p V	p or (q or r) is equiv. to
	q) V r]	(p or q) or r
Association (2)	$[\mathbf{p} \land (\mathbf{q} \land \mathbf{r})] \models [(\mathbf{p} \land$	p and (q and r) is equiv
	q)∧ r]	to (p and q) and r
Distribution (1)	[p∧ (q∨ r)] ├ [(p∧	p and (q or r) is equiv.
	$\mathbf{q}) \vee (\mathbf{p} \wedge \mathbf{r})]$	to (p and q) or (p and r
Distribution (2)	$[\mathbf{p} \lor (\mathbf{q} \land \mathbf{r})] \models [(\mathbf{p} \lor \mathbf{v})]$	p or (q and r) is equiv.
	$\mathbf{q}) \wedge (\mathbf{p} \vee \mathbf{r})]$	to (p or q) and (p or r)
Double Negation	р - ¬-р	p is equivalent to the
	واستراثيجيات الترم	negation of not p
Transposition	$(\mathbf{p} \to \mathbf{q}) \models (\neg \mathbf{q} \to \neg \mathbf{p})$	If p then q is equiv. to i
		not q then not p
Material Implication	$(\mathbf{p} \to \mathbf{q}) \models (\neg \mathbf{p} \lor \mathbf{q})$	If p then q is equiv. to
		either not p or q
Material Equivalence	$(\mathbf{p}\leftrightarrow\mathbf{q})\models[(\mathbf{p}\rightarrow\mathbf{q})\land$	(p is equiv. to q) means
(1)	$(\mathbf{q} \rightarrow \mathbf{p})]$	(if p is true then q is
		true) and (if q is true
		then p is true)
Material Equivalence	$(\mathbf{p} \leftrightarrow \mathbf{q}) \vdash [(\mathbf{p} \land \mathbf{q}) \lor$	(p is equiv. to q) means
(2)	[(q ∧ ¬p)]	either (p and q are
		true) or (both p and q
Ermontotion		are false)
Exportation	$\begin{bmatrix} (p \land q) \rightarrow r \end{bmatrix} \models \begin{bmatrix} p \rightarrow r \end{bmatrix}$	from (if p and q are
	$(\mathbf{q} \rightarrow \mathbf{r})$]	true then r is true) we
		can prove (if q is true then r is true if n is
		then r is true, if p is true)
Importation	$[p \rightarrow (q \rightarrow r)] \vdash [(p \land$	
	•	
Tautology	$ \begin{array}{c c} q \end{array} \rightarrow r \\ \hline p \end{array} \left[\begin{array}{c} c \\ p \end{array} \right] \left[\begin{array}{c} p \\ v \end{array} \right] \left[\begin{array}{c} c \\ p \end{array} \right] \left[\begin{array}{c} c \\ v \end{array} \\ v \end{array} \right] \left[\begin{array}{c} c \\ v \end{array} \\ v \end{array} \right] \left[\begin{array}{c} c \\ v \end{array} \\ v \end{array} \\[\begin{array}{c} c \\ v \end{array} \\[\begin{array}{c} c \\ v \end{array} \\[\end{array} \\[\end{array} \\ v \end{array} \\[\end{array} \left[\begin{array}{c} c \\ v \end{array} \\[$	p is true is equiv. to p is
I uutorogy	r W • P	true or p is true

II) Hilbert – Ackermann Axiomatic System

In this paper the writer will illustrate the Axiomatic system of Hilbert – Ackermann denoted by (AX_{HA}) Which has eighteen theorems, This system used \lor , \supset and \neg as a primitive connectives. and $A \supset B$ as an abbreviation for $\neg A \lor B$. And we have four axiom schemas. The only rule of inference is <u>Modus Ponens</u>. We will give a full proof of the completeness and soundness of this system.

Historical biography Wilhelm Ackermann

Wilhelm Ackermann was born on 29 March 1896 in Schonebeck Germany. He was a mathematical logician who worked with <u>Hilbert</u> in Gottingen. Ackermann received his doctoral degree in 1925. He died in 24 December 1962 in Ludenscheid, Germany.

Ackermann was also the main contributor to the development of the logical system known as the epsilon calculus, originally due to <u>Hilbert</u>. This formalism formed the basis of Bourbaki's logic and set theory. From 1929 until 1948 he taught as a teacher at the Arnoldinum <u>Gymnasium</u> in Burgsteinfurt and in Luedenscheid. He was corresponding member of the Academia Wissenschaften in Gottingen, and was honorary professor at the University Munster.

Among Ackermann's later work are consistency proofs for set theory (1937), full arithmetic (1940) and type free logic (1952). Further there was a new axiomatization of set theory (1956), and a book Solvable cases of the decision problem (North Holland, 1954).^[4]

III) Axiom and Theorems schemas:

 $\mathbf{AX}_{\mathbf{HA}}\mathbf{1}: \quad \mathbf{A} \lor \mathbf{A} \supset \mathbf{A}$

 $\mathbf{AX}_{\mathbf{HA}}\mathbf{2}: \mathbf{A} \supset \mathbf{A} \lor \mathbf{B}$

 $\mathbf{AX}_{\mathbf{HA}}\mathbf{3} : \mathbf{A} \lor \mathbf{B} \supset \mathbf{B} \lor \mathbf{A}$

AX_{HA}4: $(B \supset C) \supset (A \lor B \supset A \lor C)$ [11]

Theorem 3.1 : - A \supset B $\vdash_{HA} C \lor A \supset C \lor B$.

Proof : -

(1) $A \supset B$ assumption.

38

 $\begin{array}{c}(\ 2\)\quad (A\supset B)\supset (\ C\lor A\supset C\lor B\)\\ AX_{HA}4\end{array}$

$$(3) \quad \mathbf{C} \lor \mathbf{A} \supset \mathbf{C} \lor \mathbf{B}$$

 $\therefore \mathbf{A} \supset \mathbf{B} \mid_{\mathsf{HA}} \mathbf{C} \lor \mathbf{A} \supset \mathbf{C} \lor \mathbf{B}.$

Theorem 3.2:- $|_{HA} (A \supset B) \supset ((C \supset A) \supset (C \supset B)).$

Proof : -

 $(1) (A \supset B) \supset (\neg C \lor A \supset \neg C \lor B)$ AX_{HA}

 $(2) \quad (A \supset B) \supset ((C \supset A) \supset (C \supset B))$ implication definition of

1,2, MP

Implic

JESUS.ORG.LY

 $\therefore \models_{HA} (A \supset B) \supset ((C \supset A) \supset (C \supset B)).$ Theorem 2.3:- $C \supset A, A \supset B \models_{HA} C \supset B.$ Proof : (1) $C \supset A$ assumption.
(2) $A \supset B$ assumption.
(3) $(A \supset B) \supset ((C \supset A) \supset (C \supset B))$ Theorem 3.2
(4) $((C \supset A) \supset (C \supset B))$ (5) $C \supset B$ $\therefore C \supset A, A \supset B \models_{H} C \supset B.$ Theorem 3.4:- $\models_{HA} (A \supset A)$ (i.e., $\models_{HA} (\neg A \lor A)$

Proof : -

(1) $((A \lor A) \supset A) \supset ((A \supset (A \lor A)) \supset (A \supset A)$ Theorem 3.2	())
$(2) (A \lor A) \supset A$ $AX_{HA}1$	
$(3) (A \supset (A \lor A)) \supset (A \supset A)$	1 , 2 , MP
$(4) A \supset (A \lor A)$ AX _{HA} 2	
$(5) A \supset A$	3,4,MP
$\therefore \mid_{\mathrm{HA}} (\mathbf{A} \supset \mathbf{A})$	
Theorem 3.5:- $H_A (A \lor \neg A)$	
Proof:-	
$(1) \mathbf{A} \supset \mathbf{A}$	Theorem 3.4
(2) ¬A v A واستراتيجيات التدريس A v A	Definition of implication
$(3) (\neg A \lor A) \supset (A \lor \neg A)$ AX _{HA} 3	
$(4) (\mathbf{A} \lor \neg \mathbf{A})$	2,3,MP
$\therefore \vdash_{\mathrm{HA}} (\mathbf{A} \lor \neg \mathbf{A})$	
Theorem 3.6:- $\vdash_{HA} A \supset \neg \neg A$	
Proof : -	
$(1) \neg A \lor \neg \neg A$	Theorem 3.5
(2) $A \supset \neg \neg A$ implication	Definition of
$\therefore \vdash_{\mathrm{HA}} \mathbf{A} \supset \neg \neg \mathbf{A}$	
Theorem 3.7 :- $\mid_{HA} \neg \neg A \supset A$	
Droof	

Proof :-

Journal Of Education Sciences Ten Issue - September 2022

	40	
	(1) $A \vdash \Box A$	Theorem 3.6
	$(2) (\neg A \supset \neg \neg \neg A) \supset ((A \lor \neg A) \supseteq AX_{HA}4$	$(\mathbf{A} \vee \neg \neg \neg \mathbf{A}))$
	$(3) (A \lor \neg A) \supset (A \lor \neg \neg A)$	1,2,MP
	$(4) (\mathbf{A} \lor \neg \mathbf{A})$	Theorem 3.5
	$(5) A \lor \neg \neg \neg A$	3,4, M P
	$(6) (\mathbf{A} \lor \neg \neg \neg \mathbf{A}) \supset (\neg \neg \neg \mathbf{A} \lor \mathbf{A})$	AX _{HA} 3
	$(7) \neg \neg \neg A \lor A$	5,6,MP
	$(8) \neg \neg A \supset A$ implication	7, Definition of
JESUS.ORG.LY	Theorem 3.8:- $\downarrow_{HA} \neg B \supset (B \supset C)$ Proof : -	
JESU	$(1) \neg B \supset (\neg B \lor C)$ AX _{HA} 2	
	$(2) \neg B \supset (B \supset C)$ implication	Definition of
	$\therefore \mid_{\mathrm{HA}} \neg \mathbf{B} \supset (\mathbf{B} \supset \mathbf{C})$	
	Theorem 3.9:- $\downarrow_{HA} A \lor (B \lor C) \supset ($ Proof : -	$((\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C})) \lor \mathbf{A})$
	(1) $C \supset (C \lor A)$ AX _{HA} 2	
	$(2) (C \lor A) \supset (A \lor C)$ AX _{HA} 3	
	$(3) C \supset (A \lor C)$	1, 2, Theorem 3.3

The completeness of "Hilbert – Ackermann Axiomatic System "Logic and Descriptive 41		
$(4) (C \supset (A \lor C)) \supset ((B \lor C) \supset (B \lor (A \lor C)))$	AX _{HA} 4	
$(5) (B \lor C) \supset (B \lor (A \lor C))$	3,4,MP	
$(6) ((B \lor C) \supset (B \lor (A \lor C))) \supset ((A \lor (B \lor C)) \supset (A \lor AX_{HA}4))) \supset ((A \lor (B \lor C)) \supset (A \lor AX_{HA}4))) \supset (A \lor AX_{HA}4)$	$\mathbf{A} \lor (\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C}))))$	
(7) $(\mathbf{A} \lor (\mathbf{B} \lor \mathbf{C})) \supset (\mathbf{A} \lor (\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C})))$	5, 6 , MP	
(8) $(\mathbf{A} \lor (\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C}))) \supset ((\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C})) \lor \mathbf{A})$	AX _{HA} 3	
$(9) \mathbf{A} \vee (\mathbf{B} \vee \mathbf{C}) \supset ((\mathbf{B} \vee (\mathbf{A} \vee \mathbf{C})) \vee \mathbf{A})$	7, 8 , Theorem 3.3	
$\therefore \vdash_{\mathrm{HA}} \mathbf{A} \lor (\mathbf{B} \lor \mathbf{C}) \supset ((\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C})) \lor \mathbf{A})$		
Theorem 3.10:- \downarrow_{HA} (($\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C})$) $\lor \mathbf{A}$) \supset ($\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C})$	C))	
Proof : -		
$(1) (A \lor C) \supset ((A \lor C) \lor B)$ AX _{HA} 2		
$(2) ((\mathbf{A} \lor \mathbf{C}) \lor \mathbf{B}) \supset (\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C}))$	AX _{HA} 3	
$(3) (\mathbf{A} \vee \mathbf{C}) \supset (\mathbf{B} \vee (\mathbf{A} \vee \mathbf{C}))$	1,2, Theorem 3.3	
(4) $((A \lor C) \supset (B \lor (A \lor C))) \supset ((A \supset (A \lor C)) \supset (A \supset (A \lor C)))$ Theorem 3.2	$(\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C}))))$	
(5) $(\mathbf{A} \supset (\mathbf{A} \lor \mathbf{C})) \supset (\mathbf{A} \supset (\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C})))$	3, 4 ,MP	
$(6) A \supset (A \lor C)$	AX _{HA} 2	
$(7) A \supset (B \lor (A \lor C))$	5,6,MP	
(8) $(A \supset (B \lor (A \lor C))) \supset (((B \lor (A \lor C)) \lor A) \supset ((B \lor (A \lor C)) \lor A)) \supset ((B \lor (A \lor C))) \lor A)$	∨ C))∨(B ∨(A ∨C))))	
$(9) ((B \lor (A \lor C)) \lor A) \supset ((B \lor (A \lor C)) \lor (B \lor (A \lor C))) $	(C)))) 7, 8, MP	
$(10) ((B \lor (A \lor C)) \lor (B \lor (A \lor C))) \supset (B \lor (A \lor C)))$	AX _{HA} 1	
$(11) ((B \lor (A \lor C)) \lor A) \supset (B \lor (A \lor C))$	9, 10,Theorem 3.3	

$ \therefore \models_{\mathrm{HA}} ((\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C})) \lor \mathbf{A}) \supset (\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C})) $	<u>))</u>
Theorem 3.11:- $\vdash_{HA} (A \lor (B \lor C)) \supset (B \lor Proof : -$	(A v C))
(1) $\mathbf{A} \lor (\mathbf{B} \lor \mathbf{C}) \supset ((\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C})) \lor \mathbf{A})$ theorem 3.9	
(2) (($B \lor (A \lor C)$) $\lor A$) \supset ($B \lor (A \lor C)$) theorem 3.10	
(3) $\mathbf{A} \lor (\mathbf{B} \lor \mathbf{C}) \supset (\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C}))$ $\therefore \mid_{\mathbf{H}\mathbf{A}} (\mathbf{A} \lor (\mathbf{B} \lor \mathbf{C})) \supset (\mathbf{B} \lor (\mathbf{A} \lor \mathbf{C}))$	theorem 3.3
Theorem 3.12:- $\mid_{HA} (A \supset (B \supset C)) \supset (B \supset C)$ Proof : -	$(\mathbf{A} \supset \mathbf{C}))$
(1) $(\neg A \lor (\neg B \lor C)) \supset (\neg B \lor (\neg A \lor C))$	Theorem 3.11
(2) $(A \supset (\neg B \lor C)) \supset (B \supset (\neg A \lor C))$ (2) $(A \supset (P \supset C)) \supset (B \supset (\neg A \lor C))$	definition of implication
(3) $(A \supset (B \supset C)) \supset (B \supset (A \supset C))$ $\therefore \mid_{HA} (A \supset (B \supset C)) \supset (B \supset (A \supset C))$	definition of implication
Theorem 3.13 : - $\vdash_{\text{HA}} (A \supset B) \supset (\neg B \supset \neg A)$	
Proof: - $(1) B \supset \neg \neg B$	Theorem 3.6
Proof:- (1) $B \supset \neg \neg B$ (2) $(B \supset \neg \neg B) \supset ((\neg A \lor B) \supset (\neg A \lor \neg A) \land AX_{HA}4$	
$AX_{HA}4$	
$(3) (\mathbf{A} \vee \mathbf{D}) \supseteq (\mathbf{A} \vee \mathbf{D})$	1,2,MP
$(4) (\neg A \lor \neg \neg B) \supset (\neg \neg B \lor \neg A)$ (5) $((\neg A \lor \neg \neg B) \supset (\neg \neg B \lor \neg A)) \supset$	AX _{HA} 3
$(((\neg \mathbf{A} \lor \mathbf{B})) \supset (\neg \mathbf{A} \lor \neg \neg \mathbf{B})) \supset ((\neg \mathbf{A} \lor \mathbf{B}))$	$\supset (\neg \neg B \lor \neg A)))$ theorem 3.2
$(6) ((\neg A \lor B) \supset (\neg A \lor \neg \neg B)) \supset ((\neg A \lor B))$	
$(7) (\neg A \lor B) \supset (\neg \neg B \lor \neg A)$	3, 6 ,MP
$(8) (A \supset B) \supset (\neg B \supset \neg A)$	definition of implication twice
$\therefore \vdash_{\mathrm{HA}} (\mathbf{A} \supset \mathbf{B}) \supset (\neg \mathbf{B} \supset \neg \mathbf{A})$	
Theorem 3.14:- $H_{HA}(C \supset A) \supset ((A \supset B) \supset$	$(\mathbf{C} \supset \mathbf{B}))$
Proof : -	
(1) $(A \supset B) \supset ((C \supset A) \supset (C \supset B))$ Theorem 3.2	
(2) $(A \supset B) \supset ((C \supset A) \supset (C \supset B)) \supset ((C \supset B)) \supset ((C \supset A) \supset (C \supset B)) \supset ((C \supset B))) \supset ((C \supset B)) \supset ((C \supset B))) \supset ((C \supset B))) \supset ((C \supset B))) $	$C \supset A) \supset ((A \supset B) \supset (C \supset B))$ Theorem
$(8) (C \supset A) \supset ((A \supset B) \supset (C \supset B))$	1,2,MP
$\therefore \mid_{\mathrm{HA}} (\mathbf{C} \supset \mathbf{A}) \supset ((\mathbf{A} \supset \mathbf{B}) \supset (\mathbf{C} \supset \mathbf{B})$	
Theorem 3.15:- $A \supset (B \supset C)$, $A \supset B \vdash_{HA} A$	$\mathbf{A} \supset (\mathbf{A} \supset \mathbf{C})$

Proof: -(1) $A \supset (B \supset C)$ assumption $(2) \quad \mathbf{A} \supset \mathbf{B}$ assumption $(3) (A \supset B) \supset ((B \supset (A \supset C)) \supset (A \supset (A \supset C)))$ theorem 3.14 (4) $(\mathbf{B} \supset (\mathbf{A} \supset \mathbf{C})) \supset (\mathbf{A} \supset (\mathbf{A} \supset \mathbf{C}))$ 2, 3, MP(5) $(A \supset (B \supset C)) \supset (B \supset (A \supset C))$ Theorem 3.12 $(6) \quad \mathbf{B} \supset (\mathbf{A} \supset \mathbf{C})$ 1, 5, MP(7) $A \supset (A \supset C)$ 4,6,MP $\therefore \mathbf{A} \supset (\mathbf{B} \supset \mathbf{C}), \mathbf{A} \supset \mathbf{B} \vdash_{\mathbf{H}\mathbf{A}} \mathbf{A} \supset (\mathbf{A} \supset \mathbf{C})$ Theorem 3.16:- $A \supset (B \supset C), A \supset B \vdash_{HA} A \supset C$ **Proof : -**(1) $A \supset (B \supset C)$ assumption $(2) A \supset B$ assumption $(3) \neg A \supset (A \supset C)$ theorem 3.8 $(4) (\neg A \supset (A \supset C)) \supset (\neg (A \supset C) \supset A)$ theorem 3.13 3,4,MP $(5) (\neg A \supset (A \supset C)) \supset \neg \neg A$ $(6) \neg \neg A \supset A$ theorem 3.6 $(7) \neg (A \supset C) \supset A$ 5, 6, theorem 3.3 (8) $A \supset (A \supset C)$ 1, 2, theorem 3.14 7,8, theorem $(9) \neg (A \supset C) \supset (A \supset C)$ 3.3 (10) $(A \supset C) \supset \neg \neg (A \supset C)$ theorem 3.6 (11) $\neg (A \supset C) \supset \neg \neg (A \supset C)$ 9, 10, theorem 3.3 $(12) \neg \neg (A \supset C) \lor \neg \neg (A \supset C)$ definition of implication $(13) (\neg \neg (A \supset C) \lor \neg \neg (A \supset C)) \lor \neg \neg (A \supset C)$ AX_{HA}3 $(14) \neg \neg (A \supset C)$ 12, 13, MP $(15) \neg \neg (A \supset C) \supset (A \supset C)$ Theorem 3.7 $(16) A \supset C$ 14, 15, MP $\therefore A \supset (B \supset C), A \supset B \vdash_{HA} A \supset C$

Theorem 3.17:- If Γ , A $\vdash_{HA} B$ Then $\Gamma \vdash_{HA} A \supset B$ (Deduction theorem) [1] Proof : -

Let $B_0\,,\,B_1\,,\,\ldots\,,\,B_{n\text{-}1}\,\text{be a proof of }\,B$ from Γ , A

We must show by induction that for every i < n , $A \supset B_i$ is provable from $\Gamma.$ Case (1)

 B_i is a logical axiom or a member of Γ , in this case B_i can be used in proving $A \supset B_i$ from $\ \Gamma.$

Case (2)

 $B_i=A$ in This case $A\supset B_i=A\supset A$ and by theorem 3.4 ($A\ \supset A$) is provable in the deductive system.

Now suppose that the deduction of B_i from $\Gamma \cup \{A\}$ is a sequence with n members, where n > 1, and that the proposition hold for all wffs. C which can be deduced from $\Gamma \cup \{A\}$ with fewer than n members. This time there are for cases

Case 1: Case 2: Case (3)

```
Bi is obtained from tow formulas say C \supset Bi and C.
```

```
by the induction hypothesis \vdash_{HA} A \supset (C \supset B_i), \vdash_{HA} (A \supset C)
```

```
(1) A \supset (C \supset B_i)
```

```
assumption
```

JESUS.ORG.LY

```
(2) A \supset C assumption
```

```
\begin{array}{ccc} (3) & A \supset B_i \\ \therefore \Gamma \mid_{HA} A \supset B \end{array}
```

theorem 3.16

```
Theorem 3.18:- \mathbf{B} \supset \mathbf{A}, \neg \mathbf{B} \supset \mathbf{A} \vdash_{HA} \mathbf{A}
Proof : -
(1) \quad \mathbf{B} \supset \mathbf{A}
assumption
(2) \neg B \supset A
assumption
(3) (B \supset A) \supset (\neg A \supset \neg B)
(4) \neg A \supset \neg B
(5) \neg A \supset A
(6) (\neg A \supset A) \supset (\neg A \supset \neg \neg A)
(7) (\neg A \supset \neg \neg A)
(8) \neg \neg A \lor \neg \neg A
(9) (\neg\neg A \lor \neg\neg A) \supset \neg\neg A
(10) \neg \neg A
(11) \neg \neg A \supset A
(12) A
           \therefore \mathbf{B} \supset \mathbf{A}, \neg \mathbf{B} \supset \mathbf{A} \models_{\mathrm{HA}} \mathbf{A}
```

theorem 3.12 1,3,MP 2,4,theorem 3.3 theorem 3.13 5,6,MP 7, Definition of Implication AX_{HA}1 9,8,MP Theorem 3.7 10,11,MP

References

1. A. G. Hamilton, Logic for Mathematicians , Cambridge University Press1978,(J. W. Arrowsmith Ltd ,Bristol BS32NT)

2. Brandon Bennett, A Concise Introduction to the Fundamentals of Classical Logic, School of Computing University of Leeds. January 2002.

3. Edmund Burke, Eric Foxley. Logic and its Applications. C.A.R. HOARE SERIES EDITOR. 1996.

4. http://www-history.mcs.st

andrews.ac.uk/Mathematicians/Hilbert.html

5. http://www-history.mcs.st

andrews.ac.uk/Math<mark>ematicians/Kleene.html</mark>

6. Lucio Tavernini. Foundations of Mathematics: Note 2 (The Propositional Calculus. 2004

7. Mendelson. Introduction to Mathematical Logic. The university series in undergraduate mathematics.

للمناهج واستراتيجيات التدريا

