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The completeness of ""Hilbert — Ackermann Axiomatic System"’
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Deductive Mathematical and Descriptive Logic and propositional calculus
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Background and Language
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The capital letters of the alphabet, standing as propositional variables.
These are atomic formulas. Conventionally, either the Latin alphabet (A ,
B, C) or the Greek alphabet (y , ¢, y) is used, but the two are not mixed.

Symbols denoting the following connectives (or logical operators):

-, A, V, —, <. (We may do with fewer operators (and thus symbols)by
having some abbreviate others e.g. P — Q is equivalent to = P v Q.)

The left and right parentheses: (, ).

The set of well-formed formulas (wffs) is recursively defined by the following
rules:

1. Basis: Letters of the alphabet (usually capitalized such as A, B, o, ¥, etc.)
are wffs,

2. Inductive clause I:  If ¢ is a wff, then — ¢ is a wff.
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3. Inductive clause II:  If ¢ and y are wifs, then (¢ A W), (¢ vV V), (¢ — V),
and (¢ < y) are wifs.

4. Closure clause:  Nothing else is a wff.

Repeated applications of these three rules permit the generation of complex
wffs. For example:

1. By rule 1, Ais a wff.

2. By rule 2, = A'is a wff.

3. By rule 1, B is a wff.
4.Byrule3, (-~ AvB)isawff.

I) Basic argument forms of the calculus

name sequent Description
if p then q ; p; therefore

q
if p then g; not g;

Modus ponens [(P—a)Aq] |p

Modus Tollens (P—@A~al F7P | iorefore not 3
Hypothetical [(p — 9 A(q—1)] |— if pthen q; if g thenr;
Syllogism (p—r) therefore, if pthenr
Disjunctive Syllogism |[(pV q) A —p] |— q Either p or g; not p;
therefore, g
Destructive Dilemma [[(p > q) A (r —> s) A If pthenq; andifr

(-qV —s)] | (=pV -r) |thens; but either not g
or not s; therefore
rather not por notr

Simplification (PA Q) Fp p and g are true;
therefore p is true
Conjunction P, g |—(p A Q) p and g are true

separately; therefore
they are true conjointly
Addition p |— (pVv Q) p is true; therefore the
disjunction (p or q) is
true

Composition [(Pp—a@A@—n)] [ |Ifptheng;andifp
[p— (qA )] then r; therefore if p is
true then g and r are
true

—
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De Morgan's
Theorem (1)

- (PA Q) [(-pV -Q)

The negation of (p and
q) is equiv. to (not p or
not q)

De Morgan's
Theorem (2)

~(PV q) FCpA -Q)

The negation of (p or q)
IS equiv. to (not p and
not q)

Commutation (1)

(PV Q) F(@qV p)

(p or g) is equiv. to (q
or p)

Commutation (2)

(PA Q@ (@A P)

(p and q) is equiv. to (g
and p)

Association (1)

[ov (@v 0] FlpV
qQVr]

p or (g or r) is equiv. to
(porqg)orr

Association (2)

[PA (@A D] FI(PA
QAT

p and (g and r) is equiv.
to(pandg)andr

Distribution (1)

[PA @V D] FI(PA
QV (pA )]

p and (g or r) is equiv.
to (p and g) or (p and r)

Distribution (2)

[oV (@A D] Fl(PV
QDA (pV )

p or (g and r) is equiv.
to(porqg)and (porr)

Double Negation

pF—p

p is equivalent to the
negation of not p

Transposition

(P—q F(q—-p)

If p then q is equiv. to if
not g then not p
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Material Implication

(P—q FCpV Q)

If p then g is equiv. to
either not p or q

Material Equivalence

1)

P<q FIp—9A
(q — p)l

(p is equiv. to q) means,
(if p is true then q is
true) and (if g is true
then p is true)

Material Equivalence

(2)

P<q FIpAQgV
(-q A -p)]

(p is equiv. to q) means,
either (p and g are
true) or (both pand q
are false)

Exportation

[(PA Q) —r] FIp—
(q—r)]

from (if pand g are
true then r is true) we
can prove (if g is true
then ristrue, if pis
true)

Importation [p—(@—1)] FIPA

q) —r]
Tautology pFEPEVDP p is true is equiv. to p is
true or pis true
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I1) Hilbert — Ackermann Axiomatic System
In this paper the writer will illustrate the Axiomatic system of

Hilbert — Ackermann denoted by (AXna) Which has eighteen theorems,
This system used v, > and - as a primitive connectives. and A 5B as an
abbreviation for -A v B . And we have four axiom schemas. The only rule
of inference is Modus Ponens. We will give a full proof of the completeness
and soundness of this system.

Historical biography Wilhelm Ackermann

Wilhelm Ackermann was born on 29 March 1896 in Schonebeck
Germany. He was a mathematical logician who worked with Hilbert in
Gottingen. Ackermann received his doctoral degree in 1925. He died in 24
December 1962 in Ludenscheid, Germany.

Ackermann was also the main contributor to the development of the logical
system known as the epsilon calculus, originally due to Hilbert. This
formalism formed the basis of Bourbaki's logic and set theory. From 1929
until 1948 he taught as a teacher at the Arnoldinum Gymnasium in
Burgsteinfurt and in Luedenscheid. He was corresponding member of the
Academia Wissenschaften in Gottingen, and was honorary professor at the
University Munster.

Among Ackermann's later work are consistency proofs for set theory
(1937), full arithmetic (1940) and type free logic (1952). Further there was a
new axiomatization of set theory (1956), and a book Solvable cases of the
decision problem (North Holland, 1954). 14
I11) Axiom and Theorems schemas:

AXnal: AVADA

AXua2: A DAvB

AXna3: AvB oBVA

AXHad: BoC)o(AvBoAvVC) gy
Theorem3.1:-A>B fta CVAS CVB.

Proof : -

—
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(1) AoB
assumption.

(2) A>oB)o(CvA>CvB)
AXnad

(3) CvAoCvB 1,2, MP
~ADB |‘HA CvAoCvB.

Theorem 3.2:- hia (ADB) > ((C 2A)>(C oB)).

Proof : -

(1) AoB)o(-CvA>-CvB)
AXHa

(2) (AoB)o((CoA)>(C>B)) definition of
implication

. A (ADB)>((C DA)>(C oB)).
Theorem2.3:- C oA, A>B |—HAC:> B.
Proof : -

(1) C oA
assumption.

(2) AoB
assumption.

(3) A>B)o((CoA)>(C oB))

Theorem 3.2
(4) (CoA)>(C>B)) 2,3, MP
(5) CoB 1,4, MP

. CoA,A>B lHC>oB.

Theorem 3.4:- hia (ADA)  (ie., fHa (- AV A)

Proof : -
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(1) (AVvA)DA)o((Ao(AVA)D(ADA))
Theorem 3.2
(2) AvA)DA
AXnal
(3) (Ao(AVA)>D(ASA) 1,2, MP
(4) Ao(AVA)
AXHa2
(5) AoA 3,4, MP
- ia (A2A)
Theorem 3.5:- |a (A v = A)
Proof : -
(1) Ao A Theorem 3.4
(2) ~Av A Definition of implication
(3) FAv A)o (Av-A
AXHa3
(4) (Av-A) 2,3,MP
|‘HA (Av-A)
Theorem 3.6:- fra A > —-A
Proof : -
(1) -Av--A Theorem 3.5
(2) Ao--A Definition of
implication

|‘HA A>--A
Theorem 3.7 :- fia-—AD A

Proof :-

—
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(1) "-Ao--A Theorem 3.6

(2) (‘IAD_I_I_IA):)((AVﬂA)D(AVﬁﬂﬂA))
AXuad

(3) (AvaA)(Av——A) 1,2, MP
(4) (Av=A) Theorem 3.5
(5) Av——A 3,4, MP
(6) (AvarA)D(—AVA) AXHa3
(7) —AVA 5,6, MP

(8) Ao A 7, Definition of
implication

|‘HA —-A>DA
Theorem 3.8:- ha-B> (B oC)
Proof : -

(1) Bo(-BvC)
AXHa2

(2) -Bo(B>C) Definition of
implication

|‘HA —IBD(B :)C)
Theorem 3.9:- ftaAV(BvC)>(BV(AVC))VA)
Proof : -

(1) Co(CvVvA)
AXHa2

(2) (CvA o (AVC(C)
AXHa3

(3) Co(Av(C) 1,2, Theorem 3.3
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(4) Co(AvC)o(BvC)o(BVv(AV(C)) AXnad
(5) (BvC)o(Bv(AvC(C)) 3,4, MP

(6) (BvC)o(BVv(AVC)o(Av(BvO)o(Av(BV(AVC)))
AXHad

(7) (Av(BvC)o(Av(BVv(AVvC(C)) 56, MP
(8) (Av(BVv(AvC)o(BVv(AVvC))VA) AXHA3
(9) Av(BvC)o(Bv(AvC))VvA) 7,8, Theorem 3.3

oA AV (BVC)D(BV(AVC))VA)
Theorem 3.10:- hua (BV(AVC))VA)S(BV(AvC))
Proof : -

(1) AvC)o((AvC)vB)

AXHa2
(2) (AvC)vB)o(BVv(AvV(C)) AXHA3
(3) (AvC)o(BVv(AV(C)) 1,2, Theorem 3.3

(4) (AvC)oBV(AVC)o(Ao(AVvC)o(A(BV(AVC)))
Theorem3.2

(5) Ao(AvC)o(Ao(BVv(AvC(C)) 3,4 ,MP
(6) Ao(AvC(C) AXHa2
(7) Ao(Bv(AvC(C)) 5,6, MP

(8) (Ao(BV(AVC))>(((BV(AvVC)VA)((Bv(AvC))v(BvV(AVC))))
AXnad

(9) (Bv(AvC)VA)o(BVv(AvC)v(BVv(AvC(C))) 7,8, MP
(10) (Bv(AvC))v(BVv(AvC))>o(BVv(AvC(C)) AXnal
(11) (Bv(AvC))VvVA)o(BVv(AvC(C) 9, 10,Theorem 3.3

—
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s s (BV(AVC)VA)D(BV(AVC))

Theorem 3.11:- hia(Av(BVvC))D(BvV(AvC))

Proof : -

(1) Av(BvC)o(Bv(AvC))VvA)

theorem 3.9

(2) (Bv(AvC)VvA)o(BVv(Av(C))

theorem 3.10

(3) Av(BvC)o(Bv(AvC(C)) theorem 3.3
o ha(Av(BvC))o(BVv(AVC))

Theorem 3.12:- fua(A o (B>C))o(Bo(ADC))

Proof : -

(1) CAv(-BvC))o(-Bv(-AvC(C)) Theorem 3.11
(2) (Ao(-BvC))o(Bo(-AVvC(C)) definition of implication
(3) (Ao(BoC)o(Bo(ADC)) definition of implication

. ha(AD(BDC))>(Bo(ADC))

:Theorem3.13:— |—HA(A:>B):>(ﬁB:>ﬁA)

3 Proof : -

= (1) Bo—B Theorem 3.6
-

B AXuad

L

(4) (-Av—B)o(—BVv-A) AXHa3
((-AvB)o(-Av—_B))o(-AvB)o>(—Bv—-=A))) theorem3.2

(7) (-AvB)o(—Bv-A) 3,6 ,MP
(8) (AoB)o(-Bo>-A) definition of implication twice
~. A (ADB)>(=B>-A)

Theorem 3.14:- hia(CoA)D(ADB)>(CoB))

Proof : -

(1) A>oB)o((CoA)>(C>oB))

Theorem 3.2

(2) (A>B)o((C oA)o(C oB))o((C oA)D((A oB)o(C>B)) Theorem

3.12

(8) (CoA)D((A>B)>(C>xB)) 1,2, MP
s~ ha(CoA)S(ADB)>(CoB))

Theorem 3.15:- AS(B>C),A>B haAD(ASC)
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Proof : -

(1) Ao(B>oC)

assumption

(2) A>oB

assumption

(3) AoB)o((Bo(A>C))o(A(ADC))
theorem 3.14

(4) (Bo(A>C)o(Ao(A Q) 2,3, MP
(5) Ao(BoC))o(Bo(A>C(C)) Theorem 3.12
(6) Bo(A>C) 1,5, MP
(7) Ao(A>C) 4,6, MP

. A>(B>C),A>B hinAD(ADC)
Theorem 3.16:- AS(B>C),A>B haADC
Proof : -

(1) Ao(BoC)

assumption

(2) AoB

assumption

(3) ~A>(A>C)

theorem 3.8

(4) CAo>(A>C)o(-(AoC)o-—A)
theorem 3.13

(5) CFA>(A>C))o--A 3,4, MP
(6) —ADA theorem 3.6
(7) -(AoC)oA 5,6, theorem 3.3
(8) Ao(A>C) 1,2, theorem 3.14
(9) (Ao>C)o(A>C) 7,8, theorem
3.3

(10) (AoC)o—+—(ADC) theorem 3.6
(11) -(A>C)o—+—(ADC) 9,10, theorem
3.3

(12) —(A>C)v—(ADC) definition of implication
(14) ——(A oC) 12,13, MP
(15) (A o>C)o (A>C)

Theorem 3.7

(16) AoC 14,15, MP

~A>(B>C),A>B linADC

Theorem 3.17:- If T, A fa B ThenT |ua A o B ( Deduction theorem ) py
Proof : -

—
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LetBo, B1,...,Bn1beaproofof BfromI', A
We must show by induction that for every i <n, A > B; is provable fromT".
Case (1)
Bi is a logical axiom or a member of I", in this case Bi can be used in proving
Ao Bifrom T.
Case (2)
Bi=Ain This case A>Bi=A> Aand by theorem 3.4 (A o A) is provable
in the deductive system.
Now suppose that the deduction of Bi from I' U {A} is a sequence with n
members, where n > 1, and that the proposition hold for all wffs. C which can
be deduced from I' U {A} with fewer than n members. This time there are for
cases
Case 1: :
Case 2: as two cases above
Case (3)
Bi is obtainred from tow formulas say C o> Bi and C.
by the induction hypothesis |—HA A>(C oBi), |‘HA (A>C)
(1) Ao(C>oBi)
assumption
(2) AoC
assumption
(3) Ao B;i theorem 3.16
I |‘HA A>B

Theorem 3.18:- BoA,-B>o A |—HA A
Proof : -

(1) BoA

assumption

(2) -BoA

assumption

(3) (BoA)o(-AD>-B) theorem 3.12
(4) -A>-B 1,3,MP
(5) -ADA 2,4, theorem 3.3
(6) CA>A)o(-A>—A) theorem 3.13
(8) —AV—-A 7, Definition of Implication
(9) (—AV—-—-A)D——A AXual
(10) —A 9,8, MP
(11)—ADA Theorem 3.7
(12)A 10,11, MP

BDA,—IBDA |—HAA
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